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Abstract
A finite element flow solver based on unstructured grids is employed for studying the unsteady flow past

oscillating wings.  In order to understand the basis of lift and thrust generation mechanisms, we have
performed computational studies on the flapping wing of the fruit fly, Drosophila. The computational
model is based on the experimental setup of Dickinson et al. [1]. Computations are  performed for various
phase angles between the rotation and translation motions and the time history of the unsteady forces are
compared with the experiments.  Good agreement is obtained for the thrust and drag forces.  Also, a grid
refinement study is performed to validate the computational results.  The unsteady flow is discussed in
detail.
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Nomenclature

AR = aspect ratio of the wing ( 2 2R S/  )
c = mean chord length ( 2R AR/  )
CD = coefficient of drag ( D  /q∞S )
CT = coefficient of thrust ( T  /q∞S )

D = drag force ( ( )F F
y z

2 2+  )

F = force
 n = frequency of flapping motion in Hz

q∞ = reference dynamic pressure ( 1/2 ρ∞r U
t2

2 2  )

r = distance from center of rotation

r
2

2 = second moment of the wing area
S = surface area of the wing
t = time
T = thrust ( -Fx )
U

t
= wing tip velocity (2 φ R n )

v = flow velocity
w = mesh velocity
x,y = Cartesian coordinates
φ = wingbeat amplitude

ρ∞ = free stream density
Subscript
∞ = free stream value

Introduction
Flapping foil propulsion has received considerable

attention in the past few years as an alternative to the
propeller.  This mode of propulsion which involves no
body undulation, has many applications, such as
submersibles propulsion, maneuvering and flow control
which are of interest to the hydrodynamic community,
and unconventional aerodynamics of Micro Aerial

Vehicles (MAV) and the study of aircraft flutter for the
aerodynamic community.

Flapping foil propulsion is also important in the area
of bio-fluid dynamics, for the study of propulsion in
insects, birds and certain aquatic animals. Flying
animals generate the lift and thrust as a consequence of
the interaction of the flapping motions of the wings
with the surrounding air.  These animals also perform
rapid maneuvers involving rapid plunging and pitching
motions.  Conventional steady state theories do not
predict sufficient forces required for flight, as shown by
Ellington [2].  Therefore, we need to understand the
unsteady aerodynamics of flapping wings undergoing
highly three-dimensional motions with widely varying
geometries.

Experimental works on 2-D flapping foils have been
carried out by Anderson [3] and Freymuth [4].
Computational studies have been performed by Jones
and Platzer [5] and Ramamurti and Sandberg [6].
While 2-D wing section investigations can yield useful
insights on the coupled pitching and heaving dynamics,
nothing can be learned concerning the influence of the
spanwise flow.  It is therefore essential to carry out
computations for actual 3-D insect wings. The three
dimensional wing strokes of the insects can be divided
into two translational phases and two rotational phases.
During the translational phases, upstroke and
downstroke, the wings move through the air with high
angles of attack and during the rotational phases,
pronation and supination, the wings rotate rapidly and
reverse direction. Dickinson et al. [1] has studied the
effects of the translational and rotational mechanisms of
the wing in Drosoph i la.  They explained the
aerodynamics of insect flight by direct measurement of
the forces produced by flapping wings by interaction of
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three unsteady flow mechanisms.  The ‘delayed’ stall
mechanism is a translational mechanism, which in 2-D
produces high lift in the initial phases of translation
until eventual flow separation, and in 3-D the spanwise
flow effectively prevents stall.  The rotational
circulation and wake capture are rotational mechanisms
that depend mainly on the pronation and supination of
the wing during stroke reversal. Walker and Westneat
[7] have studied the kinematics of the fin motion in a
class of fishes, namely the bird wrasse, experimentally.
Liu and Kawachi [8] have studied the flow over a
hovering hawkmoth, numerically.

In this study, we extend the 2-D pitching and heaving
airfoil computations to 3 dimensions.  This study will
address the role of the rotational motion in detail.  Also,
the role of the leading edge vortex, and the interaction
of the axial flow with this leading edge vortex are
investigated. Computations are performed for various
phase angles between the rotation and translation
motions and the time history of the unsteady forces is
compared with the experimental results.  The flow
solver we employ is a finite element based
incompressible flow solver based on simple, low-order
elements is employed.  The simple elements enable the
flow solver to be as fast as possible reducing the
overhead in building element matrices, residual vectors
etc.  The governing equations are written in Arbitrary
Lagrangian Eulerian form, which enables simulation of
flow with moving bodies.  For high Reynolds number
flow cases, the mesh requirement is met by employing
arbitrary semi-structured grids close to wetted surfaces
and wakes. The details of the flow solver, the rigid
body motion and adaptive remeshing are given by
Ramamurti et al. [9] and are summarized next.

The Incompressible Flow Solver
The governing equations employed are the

incompressible Navier-Stokes equations in Arbitrary
Lagrangian Eulerian (ALE) formulation. They are
written as

D

Dt
p

a

v
v v+ ⋅ ∇ + ∇ = ∇ ⋅ σ (1a)

D

Dt t

v v
w v=

∂

∂
+ ∇. (1b)

∇ ⋅ =v 0 (2)

Here p  denotes the pressure, v v wa = − , the

advective velocity vector (flow velocity vminus mesh
velocity w), and the material derivative is with respect
to the mesh velocity w. Both the pressure p  and the
stress tensor σ  have been normalized by the (constant)
density ρ , and are discretized in time using an implicit
time stepping procedure.  It is important for the flow
solver to be able to capture the unsteadiness of a flow
field. The present flow solver is built as time-accurate
from the onset, allowing local timestepping as an

option. The resulting expressions are subsequently
discretized in space using a Galerkin procedure with
linear tetrahedral elements.  In order to be as fast as
possible, the overhead in building element matrices,
residual vectors, etc. should be kept to a minimum. This
requirement is met by employing simple, low-order
elements that have all the variables (u,v,w,p) at the
same location.  The resulting matrix systems are solved
iteratively using a preconditioned gradient algorithm
(PCG), as described by Martin and Löhner [10]. The
flow solver has been successfully evaluated for both 2-
D and 3-D, laminar and turbulent flow problems by
Ramamurti et al. [11,12].

Rigid Body Motion And Adaptive Remeshing
In order to fully couple the motion of rigid bodies

with the hydrodynamic or aerodynamic forces exerted
on them, consistent rigid body motion integrators must
be developed.  The governing equations of motion for
rigid bodies are well known and are given by
Meirovitch [13] and for multiple bodies in relative
motion by Sandberg [14]. In the present work, the
pressure distribution on the surface is integrated to
compute forces and moments at each time step and the
equations of motion are advanced in time to produce
self-consistent trajectories.  A more detailed description
of the equations and the incorporation of the rigid body
motion in the numerical scheme for solving the fluid
flow are described in Ramamurti et al. [12].

In order to carry out computations of the flow about
oscillating and deforming geometries one needs to
describe grid motion on a moving surface, couple the
moving surface grid to the volume grid.  The volume
grid in the proximity of the moving surface is then
remeshed, to eliminate badly distorted elements. A
representative application requiring these gridding
capabilities is the computation of the flow about
pitching and heaving airfoils and the computation of
vorticity shedding from the edges of oscillating foils.  It
is also essential for computing the flow past objects
which are both accelerating and deforming.  In
deformations, the surface motion may be severe,
leading, in the absence of remeshing, to distorted
elements which in turn lead to poor numerical results.
If the bodies in the flow field undergo arbitrary
movement, a fixed mesh structure will lead to badly
distorted elements. This means that at least a partial
regeneration of the computational domain is required.
On the other hand, if the bodies move through the flow
field, the positions of relevant flow features will
change. Therefore, in most of the computational
domain a new mesh distribution will be required.

One approach to solve these problems is to add
several layers around the moving bodies which move
rigidly with the body.   As the elements (or edges)
move, their geometric parameters (shape-function
derivatives, jacobians, etc.) need to be recomputed at
every timestep. If the whole mesh is assumed to be in
motion, then these geometric parameters need to be
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recomputed globally. In order to save CPU-time, only a
small number of elements surrounding the bodies are
actually moved. The remainder of the field is then
treated in the usual Eulerian frame of reference,
avoiding the need to recompute geometric parameters.
This may be accomplished in a variety of ways, of
which the two most common are 1) by identifying
several layers of elements surrounding the surfaces that
move, and 2) by moving all elements within a certain
distance from the surfaces that move. Both approaches
have their advantages and disadvantages, and are
therefore treated in more detail.

1) Layers of Moving Elements: In this case the
elements moved are obtained by starting from the
moving surfaces, and performing n number of passes
over nearest neighbours to construct the n layers of
elements that move. This procedure is extremely fast
and works only with integer variables. On the other
hand, for situations where the element size varies
rapidly, the moving mesh region can assume bizarre
shapes. This, in turn, may force many remeshings at a
later stage. This type of procedure is most commonly
used for Euler calculations [15,16].

2) Elements Within a Distance: This second approach
requires the knowledge of the distance of a point from
the moving surfaces.  All elements within a prescribed
distance from the moving surfaces are considered as
moving. Although this procedure required more CPU-
time when being built, it offers the advantage of a very
smooth boundary of the moving mesh region.
Moreover, by specifying two distances, the region close
to the moving surfaces may be moved in the same way
the surfaces move, while further away the mesh
velocity is smoothed as before. This allows the
movement of Navier-Stokes type grids that are very
elongated, and hence sensitive to any kind of distortion,
as shown by Ramamurti et al. [11].

Mesh Movement Algorithms
An important question from the point of view of

mesh distortion and remeshing requirements is the
algorithm employed to move the mesh. Assume that the
mesh velocity on the moving surfaces of the
computational domain is prescribed as follows

w wΓm
= 0 (3)

At a certain distance from these moving surfaces, as
well as all the remaining surfaces the mesh velocity
vanishes

w Γ0
0=  (4)

The question now is, how to obtain a mesh velocity
field w  in such a way that element distortion is
minimized? A number of algorithms have been

proposed. They may be grouped together into the
following categories.
a) prescribing the mesh velocity analytically,
b) smoothing the coordinates, and
c) smoothing the velocity field.

Prescription Via Analytic Functions
In this case the mesh velocity is prescribed to be an

analytic function based on the distance from the
surface. Using heap-lists, as well as other optimal data
structures, the distance from the surface may be
obtained in O N N (  log ) operations, where N   is the
number of grid points.  Given this distance r and the
point on the surface closest to it x Γ , the mesh velocity

is given by

w w x= ( )  ( )Γ f r (5)

The function f r( )  assumes the value of unity for r = 0 ,
and decays to zero as r increases. This makes the
procedure somewhat restrictive for general use,
particularly if several moving bodies are present in the
flow field. On the other hand, the procedure is
extremely fast if the initial distance r can be employed
for all times.

Smoothing of the Coordinates
In this case, we start with the prescribed boundary

velocities. This yields a new set of boundary
coordinates at the new time step.

x x wn n t+ = +1
Γ Γ Γ∆    (6)

The mesh is smoothed based on these new values for
the coordinates of the boundary points. In most cases to
date, a simple spring analogy smoother has been
employed. The new values for the coordinates are
obtained iteratively via a relaxation or conjugate
gradient scheme.  As before, a good initial guess may
be extrapolated via

x x x0
1 12n n n+ −= − (7)

The smoothed mesh velocity is then given by

w x x= + −( )1 1

∆t

n n (8)

Most of the potential problems that may occur for
this type of mesh velocity smoothing are due to initial
grids that have not been smoothed. For such cases, the
velocity of the moving boundaries is superposed to a
fictitious mesh smoothing velocity which may be quite
large during the initial stages of a run. Moreover, if
spring analogy smoothers are employed, there is no
guarantee that negative elements won't appear.
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Smoothing of the Velocity Field
In this case, the mesh velocity is smoothed, based on

the exterior boundary conditions given by Eqs. (3) and
(4). The aim, as stated before, is to obtain a mesh
velocity field w  in such a way that element distortion is
minimized.

In this study, the smoothing of the coordinates was
employed for the mesh movement with a specified
number of layers of elements that move rigidly with the
wing. In 2-D studies [6] the grid showed that the
elements at the edge of the rigid layers were quite
distorted after one cycle of oscillation.  This is due to a
residual mesh velocity that is present due to the non-
convergence of the mesh velocity field.  This will
appear whether a spring-analogy is used or a Laplacian
based smoothing is used.

In order to reduce the distortion of the mesh, the
coordinates at the new time were obtained as a
weighted average of the original grid point location at
time t = 0 and the location of the point as if it moved
rigidly with the body.

x x xn
rigid
nf r f r+ += + −1 0 1 1( )  ( ( )) , (9)

where the weighting function is a simple linear function
based on the distance from the center of rotation r, and
is given by

f r r r

r r

r r

r
r r r

r

( )   ,

  

)

( )
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−
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1
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=
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min
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min

min
max min

(10)

The mesh velocity is then obtained using Eq. (8).

Layers of gliding points
The experimental setup of Dickinson [1] is made up

of two wings immersed in a tank. In order to reduce the
computational effort, a symmetry plane was introduced
in the present simulations.  Due to the proximity of the
wing at the beginning of the downstroke, the rotation of
the wing during the pronation phase, the normal
component mesh velocity of the points on the symmetry
plane can become non-zero. This would result in the
points being pulled away from the symmetry plane. In
order to avoid this problem, the points on the symmetry
plane are allowed to glide along this plane.  Similar
technique has been employed for the simulation of
torpedo launch [6] where the gap between the launch
way tube and the torpedo was small. In that case, the
closeness of the body resulted in a large distortion of
the elements, and the use of gliding points reduced the
number of remeshings required substantially.

Discussion Of Results
The configuration used for the flow simulations over

the flapping wing is shown in Fig. 1. This is based on
the experimental setup of Dickinson [1]. The planform

of the wing is according to the Drosophila wing and is
25cm long and 3.2mm thick.  The experimental
apparatus consisted of two wings immersed in a tank of
mineral oil. The viscosity of the oil, the length of the
wing and the frequency of the flapping motion were
chosen to match the Reynolds number (Re) of a typical
Drosophila, approximately 136.  The Re for the present
calculations is defined based on the mean chord of the
wing c  and the mean wing tip velocity Ut (ignoring the
forward velocity), as follows

Re =
c U

t

ν
(11)

where c R AR= 2 / , U n R
t

= 2φ , R is the wing length,

AR is the aspect ratio of the wing, n is the frequency of
flapping motion, and φ is the wingbeat amplitude (peak
to peak, in radians).

The kinematics of the wing motion is obtained from
the experiments. Figure 2 shows the translational
velocity of the wing tip, the rotational (angular)
velocity of the wing for three different phases between
the translational and rotational motions.  The
‘advanced’ wing motion corresponds to the case where
the wing rotation precedes the stroke reversal by 8% of
the wingbeat cycle, the ‘symmetric’ wing motion
corresponds to the wing rotation occurring
symmetrically with respect to the stroke reversal and
the ‘delayed’ wing motion corresponds to the rotation
being delayed by 8% with respect to the stroke reversal.
The wingbeat amplitude is 160°, the flapping frequency
is 0.145Hz and the angle of attack at midstroke is
approximately 40°  during both upstroke and
downstroke.

Symmetric case
The flow solver described here is employed to

compute the flow past the Drosophila wing undergoing
translation and rotation.   First, an inviscid solution was
obtained using a grid consisting of 178,219 points and
965,877 tetrahedral elements.  An initial steady state
solution was obtained in 1500 time steps. The unsteady
solution using the prescribed kinematics, Fig. 2, is then
obtained.  The surface pressure on the wing is
integrated to obtain the forces on the wing. The thrust
and the drag forces are then computed as, T F

x
= −  and

D F F
y z

= +( )2 2 , respectively. These forces are

compared to that obtained from the experiments of
Dickinson et al. [1].

The unsteady computation was carried out for 5
cycles of oscillation.  Figure 3a and b shows the
comparison of thrust and drag forces, respectively,
during one cycle of the wingbeat. The comparison is
good in that the present computations capture the peak
forces well.  The mean thrust force is approximately
0.318N and the mean thrust coefficient C

T
 is 1.317.

The mean drag force is 0.375N and the drag coefficient
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C
D
 is 1.55.  The trend of the variation of these forces

during the translational phase of the wing is also
predicted correctly, but the magnitude of the thrust
force during the downstroke is higher than that of the
experiments.  In order to understand the different
mechanisms occurring during the cycle, we can break
the cycle into two rotational and two translational
phases.  The rotational phase near the beginning of the
downstroke, called the pronation, occurs between time
t0 and t3 (Fig. 3a).  During this interval, the thrust
decreases during t0 to t1 and increases up to a time t2.
This behaviour can be explained through a rotational
mechanism.  The wing continuously rotates in the
counterclockwise direction producing a circulation
pointing nearly along the +y  direction. During t0–t1, the
wing is translating in the negative z direction, resulting
in a force pointing in the negative x direction, thus
producing a peak in thrust at t0. If a rotational
mechanism were alone present, the thrust should
continue to decrease until   time t3.  But, the thrust force
increases during the interval t1–t2.  This happens after
the wing changes direction at the start of each half
stroke.  Dickinson et al. [1] attribute this increase in
thrust to a wake capture mechanism, in which the wing
passes through the shed vorticity of the previous stroke.
In the present study, we observe a leading edge
separation bubble attached to the leading edge during
the interval t0–t1. This leading edge vortex is created at
the end of the upstroke. A possible explanation for the
increase of thrust in the interval t1–t2, is that the wing
moving through this wake benefits from the shed
vorticity. When the wing moves through this vortex
during the downstroke, it results in a stagnation region
on the bottom of the wing, thus resulting in an increase
in thrust.  As the wing continues to move down, the
separation point of this bubble moves back along the
wing chord during the interval t1–t2, as can be seen in
Fig. 4a-c. During the interval t2–t3, we observe a trailing
edge separation bubble forming, see Fig. 5a–c.  A
similar separation region forms at the wing tip, as can
be seen in Fig. 6a-c.  From Figs. 5a and 6a, a large
recirculation region can be seen in the wake of the
wing. This separated flow from the wing tip and trailing
edge results in a higher pressure on the top surface of
the wing, and hence a reduction in the thrust.  Another
observation is that during the interval t1–t3, the
magnitude of the translational acceleration of the wing
decreases while that of the angular acceleration
increases, Fig. 7. In the interval t2–t3, the magnitude of
the translational acceleration is large enough to
overcome the rotational effect, and when the angular
acceleration becomes large enough, the rotational
mechanism takes over, resulting in a reduction of thrust
up to a time t3. During the interval t3–t4, the
translational effect should result in a constant thrust, as
the translational acceleration is almost constant during
this period.  The rotational effect produces an increase
in thrust from t3–t4, with a plateau in the middle, which

occurs when the trailing edge vortex is shed from the
trailing edge.  Similar trends are observed during the
supination phase prior to the beginning of the upstroke,
t4–t5, and in the beginning of the upstroke, t5–t7.

Grid refinement study
In order to validate our computational results, we

carried out a grid refinement study. The resolution of
the grid in the vicinity of the wing is doubled.  The
computations were carried out using a grid consisting of
approximately 238K points and 1.3M tetrahedral
elements.  The time step was also halved for this
computation.  The computed thrust forces are shown in
Fig. 8. It can be seen that the agreement is very good
and even the coarse grid produces adequate resolution.

Viscous effect
Next, to the study the effects of viscosity, a viscous

computation was carried out, for Re ≈ 120.  Figure 9
shows the time history of the thrust and drag forces for
the inviscid and the viscous cases.  It is clear that the
viscous effect is minimal and the thrust and drag forces
are dominated by the translational and rotational
mechanisms.

Effect of Phasing
Next, the phasing between the translational and

rotational motions was varied.  Figure 10 shows the
comparison of forces for the case when the rotational
motion precedes the stroke reversal.  Again, the
comparison with the experimental results is good.  In
this case, the peak in the thrust force is achieved prior
to the beginning of the downstroke at t = 10.76sec and
is approximately 0.56N compared to a value of 0.47N
for the symmetric case.  This can be explained as the
effect of the rotational mechanism as before.  The
rotational effect diminishes prior to the beginning of the
downstroke, producing a negative thrust of 0.2N.  After
this point, the thrust increases up to t = 11.98sec.
During this interval, the wing moves through the wake
created during the upstroke, similar to the symmetric
case, resulting in a high pressure on the bottom of the
wing.  The velocity vectors near the leading edge are
shown in Fig. 11a-c. Also, during this interval both the
translational and rotational accelerations are in phase.
The peak thrust is approximately 0.48N compared to a
value of 0.28N for the symmetric case.  Thereafter, the
combined effect of rotational and translational motions
produce a minimum in the thrust until a second peak is
achieved due to the rotational motion at t = 14.23sec.,
prior to the beginning of the upstroke.  The mean thrust
force is approximately 0.312N and the mean thrust
coefficient C

T
 is 1.291. The mean drag force is 0.457N

and the drag coefficient C
D
 is 1.89.

As the rotational motion is delayed with respect to
the stroke reversal, the rotational motion does not
produce any thrust prior to the beginning of the
downstroke, as can be seen from Fig. 12a.  The mean



6

thrust force is approximately 0.206N and the mean
thrust coefficient C

T
 is 0.854. The mean drag force is

0.457N and the drag coefficient C
D
 is 1.496.  In the

initial period following the stroke reversal, the
rotational effect continues to produce a negative thrust.
Figures 13a and b show the velocity vectors near the
leading edge.  It can be seen that the leading edge
vortex from the upstroke is not present after t = 12.05
sec. In this case, the high pressure on the bottom of the
wing together with the orientation of the wing produces
a reduction in thrust. After this, the combined
translational and rotational mechanisms result in an
increase in thrust.  At a time t = 12.8sec, we observe a
plateau in the thrust, Fig. 12a.  During this interval, the
presence of a trailing edge vortex on the top surface, as
shown in Fig. 14a and b increases the pressure on the
top surface of the wing, resulting in a temporary loss of
thrust, and when this vortex lifts off the trailing edge,
thrust continues to increase.

Figures 15a-c show the magnitude of velocity along a
plane at the beginning of the downstroke for the three
cases, in the wake created by the wing.  It can be seen
that the velocities are greater for the advanced case and
is reduced for the symmetric case and further reduced
for the delayed rotation.  The wing moving through the
higher velocity fluid therefore produces an additional
thrust in the advanced rotation, and the wing for the
delayed case intercepts the flow at an angle that
produces negative thrust.  Similar velocity fields are
also observed in the particle image velocimetry data of
Dickinson et al. [1].

Summary and Conclusions
A finite element flow solver was employed to

compute unsteady flow past a 3-D Drosophila wing
undergoing flapping motion.  The computed thrust and
drag forces have been compared to the experimental
study of Dickinson et al. [1], and the agreement is very
good. A grid refinement study was performed to
validate the computational results, and a grid
independent solution was achieved.  The effect of
phasing between the translational and rotational
motions was studied by varying the rotational motion
prior to the stroke reversal.  It was observed that in the
case where the wing rotation is advanced with respect
to the stroke reversal, the peak in the thrust forces are
higher compared to the case when the wing rotation is
in phase with the stroke reversal, and the peak thrust is
reduced further when the wing rotation is delayed.  As
suggested by Dickinson et al. [1], we observe that the
rotational mechanism is important and the combined
translational and rotational mechanisms are necessary
to accurately describe the force time histories and
unsteady aerodynamics of flapping wings.
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Fig. 4. Velocity vectors near the leading edge on a plane y = 10cm
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a. t = 12.24 sec. b. t = 12.5 sec. c. t = 12.672 sec.

Fig. 5. Velocity vectors near the trailing edge

a. t = 12.24 sec. b. t = 12.5 sec. c. t = 12.672 sec.
Fig. 6. Velocity vectors near the wing tip
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a. t = 11.638 sec. b. t = 11.81 sec. c. t = 11.983 sec.
Fig. 11. Velocity vectors near the leading edge on a plane y = 10cm
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a. t = 11.81 sec. b. t = 12.07 sec.
Fig. 13. Velocity vectors near the leading edge on a plane y = 10cm

a. t = 12.586 sec. b. t = 12.76 sec.
Fig. 14. Velocity vectors near the trailing edge on a plane y = 10cm
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Fig. 15. Magnitude of velocity in the wake of the wing at the beginning of the downstroke


